Hirdetés
. Hirdetés

Emberi agyat használtak az ELTE kutatói a gépi tanulási módszerek teszteléséhez

|

Az új módszer a Newton-elmosás nevet kapta.

Hirdetés

Az Eötvös Loránd Tudományegyetem (ELTE) kutatói az emberi agy kapcsolatainak leírását használták innovatív gépi tanulási módszerek teszteléséhez. Az új eljárás, amelyről a tanulmány a Scientific Reports című szaklapban jelent meg februárban, a Newton-elmosás nevet kapta, és nemcsak a képi adatokat lehet megsokszorozni vele, hanem kémiai és biológiai adathalmazokra is alkalmazható.

A hiánypótló kutatást az indokolta, hogy a mesterséges intelligencia felhasználásaiban és a gépi tanulásban szükség volt olyan óriási, oktató adathalmazokra, amelyekkel hatékonyan meg lehet tanítani a programokat arra, hogy az adatok bizonyos sajátságait felismerjék. Sokszor azonban nem állnak rendelkezésre milliós adathalmazok. Ezekben az esetekben adatsokszorozást, úgynevezett augmentálást végeznek az adatokon.

Hirdetés

Ilyen például az, amikor az önvezető autó vezérlésének beállításakor a közlekedési szituációkat leíró képek egy-egy - többnyire nem lényeges részét - elhomályosítják, elmossák, és így egyetlen eredetiből sok képet tudnak származtatni. A módszer a népszerű képszerkesztő programokban is megtalálható Gauss-homályosítás vagy elmosás (Gaussian blurring).

Az eljárás azonban a biológiai, kémiai szerkezetek és képletek esetében nem működik: erre a problémára kerestek megoldást a magyar kutatók. Az ELTE Matematikai Intézete PIT Bioinformatikai Csoportjának kutatói - Keresztes László, Szögi Evelin és Varga Bálint Grolmusz Vince professzor vezetésével - kidolgozták a Newton-elmosás módszerét, amellyel nem csak képi adatokat lehet megsokszorozni.
<br><br>Az új, Newton-elmosás az adatok javítási mechanizmusát variálja: a nagyobb megbízhatóság kedvéért többször mérünk vagy számolunk ki valamilyen mennyiséget, és ezeket átlagolva használjuk. Ha valamit például tízszer mérünk meg, és a 10 mérésből minden lehetséges módon kiválasztunk mondjuk 7-et, és ezeket külön-külön átlagoljuk, akkor az adatokat megsokszorozhatjuk annyiszor, ahányszor 10 adatból 7-et ki lehet választani, a példában ez éppen 120.

"Az ELTE-s kutatók módszere nem visz be mesterséges 'homályosítást', mint a Gauss-elmosás, hanem az adatjavításba avatkozik bele: a megsokszorozott adatok minősége jobb, mint az egyedi adatoké, hiszen - a példánkban - hét mérés eredményeit átlagoltuk" - magyarázták a kutatók.

A kutatók a Newton-elmosást először az emberi agy kapcsolatait leíró, 1 053 alanytól származó agygráfokra alkalmazták, és így az adathalmaz méretét százhúszszorosára növelték, azaz, mint írják, 126 360 agygráfot készítettek az adathalmazból. A kutatók minden agygráfot öt különböző felbontásban számoltak ki, így 5-ször 126 360, azaz 631 800 agygráfot tehettek közzé. A megnövelt adathalmazon igazolták a módszer használhatóságát a gépi tanulásban.

Ami fontos, hogy az új agygráfok kiszámítása mintegy három hetet vett igénybe a kutatócsoport 36 számítógépén. Az új, a szerzők által Newton-elmosásnak nevezett módszer nem csak agygráfokra, de sok más, köztük kémiai és biológiai adathalmazra is használható.

Hirdetés
0 mp. múlva automatikusan bezár Tovább az oldalra »

Úgy tűnik, AdBlockert használsz, amivel megakadályozod a reklámok megjelenítését. Amennyiben szeretnéd támogatni a munkánkat, kérjük add hozzá az oldalt a kivételek listájához, vagy támogass minket közvetlenül! További információért kattints!

Engedélyezi, hogy a https://www.computertrends.hu értesítéseket küldjön Önnek a kiemelt hírekről? Az értesítések bármikor kikapcsolhatók a böngésző beállításaiban.